__ __         __            ___           
  / // /__ _____/ /__  ___ _  / _ \___ ___ __
 / _  / _ `/ __/  '_/ / _ `/ / // / _ `/ // /
/_//_/\_,_/\__/_/\_\  \_,_/ /____/\_,_/\_, / 
retro edition                         /___/ 
Now optimized for embedded devices!
About Successes Retrocomputing guide Email Hackaday

hackaday links

posted Apr 1st 2005 3:30am by
filed under: Uncategorized

Links

we’re back from the market and we’ve brought you the freshest of links!

aside from some encyclopedia issues and a little linux promotion going on, there is much to be discussed.

looks like researcher richard etter got bored with his daily attire and decided to get a bit more technical about his wardrobe.

also, someone got ahold of motorola’s new itunes phone which is very cool looking. they we’re able to re-create it as well and you can too.

google whom we all know and love, has come up with a little thing called ridefinder to help you

In bag USB cable

posted Sep 20th 2007 4:47pm by
filed under: laptops hacks, macs hacks


Ever had a USB cable sticking out of your laptop bag? I’ve done it many time while I’ve been traveling. James built a simple right angle USB cable so he could keep things tucked away and damage free. He epoxied a connector to some proto board, then soldered things back together.

Calculating Pi to 10 Trillion Digits; the last number is 5

posted Nov 28th 2011 7:01am by
filed under: hardware, Software Development

In August, 2010, [Alexander Yee] and [Shigeru Kondo] won a respectable amount of praise for calculating pi to more digits than anyone else. They’re back again, this time doubling the number of digits to 10 Trillion.

The previous calculation of 5 Trillion digits of Pi took 90 days to calculate on a beast of a workstation. The calculations were performed on 2x Xeon processors running at 3.33 GHz, 96 Gigabytes of RAM, and 32 Terabytes worth of hard drives. The 10 Trillion digit attempt used the same hardware, but needed 48 Terabytes of disk to store everything.

Unfortunately, the time needed to calculate 10 Trillion digits didn’t scale linearly. [Alex] and [Shigeru] waited three hundred and seventy-one days for the computer to finish the calculations. The guys used y-cruncher, a multithreaded pi benchmarking tool written by [Alex]. y-cruncher calculates hexadecimal digits of pi; conveniently, it’s fairly easy to find the nth hex digit of pi for verification.

If  you’re wondering if it would be faster to calculate pi on a top 500 supercomputer, you’d be right. Those boxes are a little busy predicting climate change, nuclear weapons yields, and curing cancer, though. Doing something nobody else has ever done is still an admirable goal, especially if it means building an awesome computer.

Shift register is all it takes to make a 3-wire serial LCD

posted Apr 7th 2011 10:30am by
filed under: misc hacks

This hack is a bit older, but one aspect of the setup makes it worth sharing. Shift registers are a common component to include in a project when you need to increase the number of I/O pins available. We’ve used them to drive LCD screens before, but we never realize you could use a 595 chip to make a 3-wire serial LCD interface. That’s because we’ve always thought of shift registers as having three control pins which must be addressed: data, clock, and latch. But it seems that’s not the case. This hack gangs the pins for clock and latch (called the storage register clock input on this chip) together. This causes the shifted data to be latched to output register one clock cycle after it is shifted into the chip.

This means you can operate the 595 chip with just two pins, but alas, you do need one more connection to drive the LCD properly. This is an HD44780 compliant display. It is being used in 4-bit mode; four of the shift register pins provide that data, while a fifth controls the Register Select pin. Since the shifted data from the 595 appears on the pins after each clock strobe, you must control the Enable pin on the LCD separately or it will behave sporadically.

So there you have it, control an HD44780 display with just 3-pins by using a $0.42 part. Are we going a little too fast for you? Check out this 595 tutorial and give the shift register simulator a try. That should bring you up to speed.

[Thanks Rajendra]

Roll the D’Icey

posted Jan 24th 2011 10:50am by
filed under: toy hacks

Most of the dice related hacks we run into have to do with pseudo random number generation, but today we saw something different. This sleek looking jumbo die is actually a prize holding box opened by a secret sequence of rotations. Using an accelerometer and an ATmega 328 with a sub-micro servo to control the locking mechanism. Worried about the batteries going flat and losing your treasure indefinitely? Good news! The batteries are accessable without giving away the secret inside.

It also turns out that this is an update to an earlier project from the same laboratory, so be sure to check that out as well to see where this build came from. Code is available for anyone looking to make their own, as well as a useful parts list.

[via Hacked Gadgets]


(c) 2014 hackaday.com. All Rights Reserved.